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1.0 SUMMARY 

Machine learning is at the heart of modern approaches to artificial intelligence. The field posits 
that teaching computers how to learn can be significantly more effective than programming them 
explicitly. This idea has revolutionized what computers can do in a wide range of domains, 
including Intelligence, Surveillance, and Reconnaissance (ISR), Natural Language Processing 
(NLP), Predictive Analytics, Cyber, and various scientific disciplines. Example applications 
include self-driving cars, image search and activity detection, object tracking, topic models, 
spam filters, recommender systems, predictive databases, and gene sequencing. Unfortunately, 
building effective machine learning applications currently requires Herculean efforts on the part 
of highly trained experts in machine learning. Probabilistic Programming is a new programming 
paradigm for managing uncertain information. 

The goal of the Probabilistic Programming for Advancing Machine Learning (PPAML) program 
is to facilitate the construction of machine learning applications by using probabilistic 
programming to: (1) dramatically increase the number of people who can successfully build 
machine learning applications; (2) make machine learning experts radically more effective; and 
(3) enable new applications that are inconceivable today.

As the Technical Area (TA) 1 (TA-1) Domain Experts team for PPAML, Galois contributed 
more than 20 years of experience developing high-level and domain-specific languages and more 
than 35 years of experience in application driven machine learning research.  

2.0 INTRODUCTION 

Machine Learning has demonstrated the potential to transform many areas of science, commerce, 
and the military. However, creating and maintaining successful machine learning systems is an 
arduous task that requires a doctoral degree and heroic software engineering efforts. One cause 
of this is the lack of good languages for defining machine learning models and systems. 
PPAML— by creating probabilistic programming systems and associated solvers—aimed to 
make existing machine learning applications easier to build and to greatly extend the range of 
problems that can be successfully solved by machine learning.  Galois, as the TA-1 Domain 
Experts, also was tasked as the research evaluator and had the following areas of contribution 
during the program: 

1. Develop Challenge Problems (CPs)
2. Evaluate Probabilistic Programming Systems (PPSs)
3. Organize and Run Summer Schools
4. Foster Collaboration
5. Evaluate Team Challenge Problems

As the TA-1 team we were the voice of the user.   Over the course of the program we were able 
to (a) expose TA-2 Probabilistic Programming, TA-3 Machine Learning, and TA-4 Inference 
Engine, heretofore referred to as TA2-4 performers, to a breadth of user scenarios in a wide a 
variety of domains, (b) produce feedback on PPS tools that enable the TA2-4 teams to 
understand user perspectives and spur them to enhance their PPS for future users, and 
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(c) develop a community of users in multiple distinct application areas who are invested in the
future developments of PPSs.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

Section 3 describes the methods for each of the primary areas of contribution: Development of 
challenge problems, evaluation of TA2-4 PPSs and team challenge problems, annual summer 
schools and program collaboration.   Results from these efforts are presented in section 4. 

3.1 Develop Challenge Problems 

The TA-1 team was responsible for developing and delivering challenge problems to performers 
in TA2-4.  A total of ten challenge problems were developed and delivered over the course of the 
program.  Three challenge problems were delivered at the program kick-off. Subsequently, the 
TA-1 team delivered a new challenge problem every six months, introduced at program Principal 
Investigator (PI) meetings.  

A framework and set of problem characteristics were developed for evaluating and selecting 
candidate problems.  We divided these into required characteristics and “diversity” 
characteristics.  Required characteristics are properties that all candidate challenge problems
must possess because they enable experimentation and the development of probabilistic 
solutions. The diversity characteristics were designed to ensure that over the course of the 
program the population of challenge problems covered a wide range of domains and problem 
types.

Required Characteristics: 
Every challenge problem was required to have the following properties: 

Learning: The problem involved learning a probabilistic model and then applying that model to 
perform some task. In some cases, we defined some pure inference sub-problems to evaluate the 
solvers under controlled conditions. 

Mature Data: The data must be in a form that is ready to be modeled in a PPS, available in 
sufficient quantity, free for distribution, and engineered for use by modelers. We sought 
problems that had both high-level representations of data (via careful feature engineering) and 
low-level representations (near to sensor data).  

Scalability: The problem supports the construction of interesting problem variants. Natural 
dimensions for scaling include the number of random variables (e.g., via changing the spatial or 
temporal extent or resolution of the data), and the amount of data (where both very small and 
very large data sets are of interest). Other scaling dimensions include introducing additional 
information sources (e.g., for information fusion problems) or multiple types of queries. These 
latter dimensions allowed us to test the degree to which the probabilistic programming languages 
support modularity and evolution by measuring how easy it is to modify the programs to 
incorporate additional information sources and queries. 
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Diversity Characteristics: A Taxonomy of Challenge Problems 
To ensure generality of PPSs—and to address problems of interest to DARPA—the set of ten 
challenge problems selected over the course of the program covered a wide range of domains, 
data structures, model types, and queries. We developed the following taxonomy to assess these 
factors. Our taxonomy exposes the specific aspects of PPS tested by each problem. 

Figure 1 Challenge Problem Dimensions 

Problem Domain: PPAML sought to provide new approaches for solving machine learning 
problems of interest to defense, science, and the economy. Within DoD, there are different needs 
for intelligence analysis; intelligence, surveillance, and reconnaissance; command, control, and 
communications; and management of individual platforms (system identification, localization, 
control, and health monitoring). Distinctive problems also arise in science (e.g., population 
modeling), medicine (e.g., brain structure modeling), and industry (e.g., engine health modeling). 

The Data Structure: Different kinds of data naturally require different support within a PPS. 
We classified data structures according to content type (sensor signals, tracklets, counts, events, 
text, images, tabular data), data structure (vector data versus relational data), and data type 
(discrete, continuous, or a hybrid of the two). Many probabilistic modeling and inference 
methods are specialized to only discrete or only continuous data, and inference can become very 
challenging with hybrid data that mix discrete and continuous variables. Most machine learning 
methods focus on vector data. Relational data have typically required different approaches than 
vector data. Time series, spatial, and graph data are all special forms of relational data. 

The Model Structure: A core issue for PPAML was to develop languages that can express a 
wide range of models. We classified model structures according to three dimensions: directed 
versus undirected, parametric versus non-parametric, and fixed versus a variable number of 



Approved for Public Release; Distribution Unlimited 
4 

objects. Classical Bayesian networks are directed graphical models, whereas Markov random 
fields are undirected models. It is also possible to have combinations of these. It is important for 
PPAML to support both kinds of models (although not necessarily in a single PPS). Parametric 
models have a fixed number of parameters, and hence, a fixed model structure. Many of the best-
performing machine learning methods are non-parametric, which allows them to optimize 
predictive accuracy by adapting the complexity of the model to the complexity of the data. 
Developments in probabilistic modeling, such as Gaussian processes and Dirichlet process 
mixture models, make it possible to define non-parametric probabilistic models that express 
uncertainty in the model structure. 
 
The third dimension concerns the structure of the objects over which inference is performed. 
Parametric models such as Hidden Markov Models can be applied to reason about variable-sized 
objects (such as protein sequences of varying length), and this is typically more complex than 
reasoning over fixed-sized objects. For many problems, the number of objects is not known—for 
example, when tracking multiple vehicles using noisy sensors or resolving co-referring 
expressions in natural language— and models must explicitly reason about an unknown number 
of objects. 
 
The Query Structure: Once a probabilistic model has been fit to data, the primary 
computational task is to provide values for some of the variables in the model and make queries 
about other variables. We identified four important dimensions along which the query processing 
should vary in PPAML: Query Type, One Shot versus Tracking, Operational Tempo, and 
Stationary versus Change Points. A posterior query asks for the posterior joint distribution of the 
query variables, whereas a Maximum Aposteriori Probability (MAP) query asks for the values of 
the query variables that jointly maximize the posterior. In Posterior Marginal and MAP Marginal 
queries, some of the variables in the model are “free” in the sense that their values are not 
observed, and they are also not queried. Inference can be significantly harder in this case than 
when all variables are queried. For decision making, the query often involves computing the 
expected value of some variable, where the expectation is taken with respect to some (marginal) 
posterior. This can be more challenging because inference cannot necessarily ignore low 
probability cases if the value of the query variable is very large. Finally, in many cases of 
interest, the query seeks to find anomalous (i.e., low probability) data points. Again, this poses a 
challenge for some inference algorithms, because the focus is on the rare cases rather than the 
common ones. 
 
A standard query is a one-shot query. One-shot queries do not consider the results of previous 
queries. But many applications involve making repeated queries as the input data evolves over 
time. We call this a tracking query. It is often possible to exploit the sequential nature of a 
tracked system to make these queries faster than if they are viewed as a series of one-shot 
queries. 
 
Operational tempo characterizes the frequency of queries. The frequency can vary wildly 
between problems. For systems with rapidly-changing dynamics (e.g., quad-rotor aircraft), the 
tempo is extremely fast whereas other tracking problems occur at the scale of days or weeks, and 
hence exhibit a slow tempo. 
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Finally, in many applications, the assumption is made that the underlying phenomenon being 
modeled is not changing. Consequently, the data can be treated as an independent and identically 
distributed sample from the model. However, in other problems of interest, the distributions do 
change over time. In such cases, a change point detection query asks the system to identify when 
the change occurred (and to characterize that change). 
 
3.1.1 CP1 – Unmanned Autonomous Systems (UAS) SLAM  
 
Unmanned Autonomous Systems are playing an expanding role in achieving missions critical to 
national security, natural resource management, emergency response and emerging industrial 
applications. To achieve the goals of these various missions, fundamental advancements must be 
made that facilitate the development of sensing and control algorithms for these systems. At the 
heart of sensing and control of UAS are models that combine or “fuse” multiple sensors to 
predict the future state of the vehicle and the world it acts in. This challenge problem was based 
on two representative systems that were used to study the sensor fusion problem: a small 
automobile with a laser range finder, as well as a flying quad-rotor aircraft (a “quadcopter”) that 
included a rich set of controls as well as visual, inertial, and location-based sensors. The 
challenge problem required PPS systems to take noisy sensor data and reconstruct both the path 
that the vehicle took through the world as well as a map of its surrounding environment. 
 
Subject matter expertise for CP1was provided by Galois. 
 
3.1.2 CP2 – Bird Migration   
 
On peak nights during migration season, billions of birds take to the air across the US. However, 
because migration proceeds over vast temporal and spatial scales, and because it is difficult to 
observe directly, it is poorly understood. Scientists would like answers to questions such as (a) 
do birds wait for favorable winds before migrating (or are they on a fixed schedule)? (b) what 
factors influence a bird's decision to stop at some location? (c) what factors influence a bird's 
decision to resume migration? and (d) how do these factors vary from one species to another? 
Answering these questions requires constructing a model of the dynamics of bird migration. 
 
In this challenge problem TA2-4 teams were tasked with: 

• Near-term predictive accuracy (24 and 48 hours into the future) 
• Reconstruction of bird population flows 
• Coverage of confidence intervals or posterior credible intervals for the population flows 

and model parameters. 
 
Subject matter expertise for CP2 was provided by Oregon State University. 
 
3.1.3 CP3 – Automated Track Linking in Wide Area Motion Imagery (WAMI)   
 
The challenge problem of automated track linking in WAMI originates in the automated video 
analytics domain, where target tracking algorithms produce short high-confidence tracks of 
moving objects, hereafter referred to as “tracklets”. The descriptive and analytic value of these 
tracklets is greatly increased if they can be accurately stitched or linked together into longer 
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tracks following the same target, e.g., a moving vehicle, in the imagery. Tracking object 
movement from overhead imagery has both military and civilian applications. An improved 
solution to the linking problem could significantly advance the state-of-the-art in WAMI analyst 
exploitation tools. We used the publicly released Wright Patterson Air Force Base (WPAFB) 
2009 dataset [1] from the Air Force Research Lab (AFRL).  The Kitware tracker [2], assessed by 
AFRL as state-of-the-art, supplied moving object detections and high-confidence, short duration 
tracklets. Geographic context, such as roads, intersections, buildings, and neighborhood types 
were also provided, creating the framework for a rich, hierarchical probabilistic programming 
problem. 

Subject Matter Expertise for CP3 was provided by Kitware.  

3.1.4 CP4 – Small Problems Collection 

The goal of the “Small Problems Collection” is to create a set of problems that span important 
dimensions of the space of probabilistic programs in terms of both program formulation and 
probabilistic inference. The set of problems was designed to help the PPAML TA2-4 teams 
identify important tradeoffs in the design and implementation of Probabilistic Programming 
Systems. Note that this is an important change in direction from the previous focus on 
benchmarking of PPS systems. 

For the Small Problems Collection, we focused on dimensions that capture abstract problem 
structure. These include the following: 
1. Data types: Continuous, Discrete, Mixed
2. Data structures: Atoms, Vectors, Relations, Grammars, Graphs
3. Model structure: Directed vs. Undirected, Parametric vs. Non-parametric, Fixed vs. Variable
number of variables, Presence of latent variables
4. Query type: MAP, Marginal MAP, Expectations, Posterior Distribution, Posterior Summary
(e.g., moments), Anomalies
5. Query timing: One-shot (data and query are presented together), Online (fixed query, but data
arrive incrementally, so the query results need to be updated incrementally), Amortized (fixed
data, but multiple, related queries arrive incrementally, and inference costs can be amortized
across them), Online Amortized (both the data and the queries arrive incrementally).

Figure 2 places each of these small problems along these dimensions.
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Figure 2 CP4 – Small Problem diversity characteristics 

Subject matter expertise for CP4 was provided by Galois. 

3.1.5 CP5 – Probabilistic Context-Free Grammars with Latent Annotation  

Context-free grammars (CFGs) provide a simple model for the structure of language and are 
widely-applied in natural language processing systems. A CFG consists of a set of non-terminal 
symbols N, a set of terminal symbols T, and designated start symbol S, and a set of production 
rules of the form N →  R , where R is a sequence of terminals or non-terminals. For each 
nonterminal n ∈ N, the set of rules having n on their left-hand-side are the “rules for n”, which 
we denote as Rules(n). A sentence is generated by beginning with the start symbol S, choosing 
one of the rewrite rules in Rules(S) and replacing S by the right-hand-side of the chosen rule. 
This is repeated, each time expanding one of the non-terminals in the emerging sentence until no 
non-terminals remain. 

Probabilistic context-free grammars (PCFGs) extend CFGs to define a probability distribution 
over the sentences and parse-trees generated by the grammar by specifying a separate 
multinomial distribution for each non-terminal n over Rules(n). These probability distributions 
can be learned from data consisting of sentences and their parse trees (“treebanks”). The most 
famous treebank is the Wall Street Journal (WSJ) treebank developed at the University of 
Pennsylvania. It consists of 23 “sections”, and it is available at no cost from the Linguistic Data 
Consortium (LDC) at the University of Pennsylvania. 

A weakness of both CFGs and PCFGs is that each time a non-terminal is expanded using one of 
its rules, the choice is made independently of all other choices. This independence prevents 
PCFGs from capturing many important linguistic regularities. One way to address this problem is 
to replace very general non-terminals such as noun phrase (NP) and noun (N) with an expanded 
set of symbols. For example, we could have NP-animate, NP-inanimate, N-animate, and N-
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inanimate, to separately model noun phrases and nouns referring to animate versus inanimate 
objects. These are sometimes referred to as annotations because one can imagine manually 
annotating each N and NP in a treebank with this additional information. However, there are no 
large annotated treebanks, and it is also not clear what annotations should be introduced. 

One way to avoid manual annotation is to take the extreme approach known as lexicalization in 
which a separate “annotation” is defined for each word in the lexicon. For example, we would 
have N-car, N-truck, N-bus and so on. This leads to an immense grammar, and learning the 
parameters for the probability distributions requires introducing some form of “smoothing” so 
that rules for similar words are given similar probabilities. 

In this challenge problem, we investigated a different approach pioneered by Matsuzaki et al. [3] 
in which the annotations are “latent”. That is, we can view the parse trees in the treebank as 
having “missing” annotations. We specify that each non-terminal can have up to k annotations, 
and it is the job of the learning algorithm to determine what those annotations should be and 
which sentences should use which annotations.  In statistical modeling terms, we replace each 
nonterminal by a mixture of distributions over its child non-terminals (which are in turn, 
recursively, mixtures over their children). Recent work on this model includes Petrov et al. [4] 
and Cohen et al. [5]. 

This problem was given in two phases. 

Phase 1:  Fitting a standard PCFG to a subset of the WSJ corpus. 

Phase 2:  Fitting a latent PCFG to a subset of the WSJ corpus. The number of latent annotations 
was fixed. 

Phase 2 Hierarchical Dirichlet Process (HDP) option:  Fitting a latent PCFG to a subset of the 
WSJ corpus. The number of latent annotations were flexible and modeled via a Hierarchical 
Dirichlet Process. 

Training data consisted of a text corpus (from the WSJ section of OntoNotes 5.0) with associated 
constituency-based parse trees (i.e., one terminal associated with each nonterminal leaf node). 
The trees were binarized, which is a standard transformation intended to simplify the parsing 
code.  

Subject matter expertise for CP5 was provided by Galois and Oregon State University. 

3.1.6 CP6 – Image Labeling  

The problem of multimedia retrieval is to develop the scientific methodology to understand and 
discover images/videos with particular content from a complex, large, and growing collection of 
multimedia. Real-world multimedia, especially as shared on the Internet, can be challenging to 
retrieve using only visual information, due to complex content, partial occlusion, and diverse 
styles and quality. The most common solution to this problem is to annotate media with 
keywords that describe the content and then perform a keyword search against these annotations. 
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The problem of annotating images consists of inferring content labels, L, conditioned on an 
image, I, and other related metadata information, M, e.g., P(L|I,M). 

In Challenge Problem 6, we approached the task of automatic image annotation or labeling by 
exploiting the metadata, M, in addition to the visual information, I. Some types of metadata (i.e., 
Exchangeable Image File Format (EXIF) tags) are generated by the camera when the image is 
taken; others (i.e., user-provided tags, comments from viewers) are generated after the image is 
uploaded to an image-sharing service such as Flickr. We used a subset of the MIRFLICKR 
[Huiskes2008] dataset to supply the ground-truth image labels, image features, and related 
metadata.  

Within the PPAML taxonomy of challenge problems, this CP is related to the Intelligence 
Analysis domain; the data structures are a hybrid of discrete (categorical) and continuous 
(features and feature distances) presented in both relational and vector forms. The basic 
parametric probabilistic model is an undirected graphical model over a fixed model structure 
with latent variables. Queries are formulated as marginal maximum a posteriori MAP for 
individual images, or joint MAP for the entire graph. The query timing is one-shot with slow 
tempo and stationary parameters. 

Subject matter expertise for CP6 was provided by Kitware. 

3.1.7 CP7 – Flu Spread  

Predicting the spread of epidemics through space and time can help government agencies and 
organizations better prepare and allocate resources. Seasonal flu epidemics have been closely 
monitored and many years of historical data have been collected by the medical community. The 
data collected and aggregated by Centers for Disease Control and Prevention (CDC) has been 
valuable for researchers trying to develop models to forecast the spread of flu epidemics. In 
addition to the CDC data, there are many other data collected by different entities for various 
purposes – many of them unrelated to flu epidemics. When those datasets are considered 
together with the CDC data, they offer the opportunity to significantly improve our ability to 
assess and forecast flu epidemics both spatially and temporally. Datasets include social network 
data and vaccination statistics. Those data have different characteristics (e.g., percentages for 
CDC regional Influenza-like Illness (ILI) rates and flu vaccination, and quantized flu activity 
levels for CDC state ILI rates) and different spatial and temporal resolution. Aggregating the 
data into a forecasting model is challenging, but if successful, can provide much-improved 
forecasting accuracy over a longer time horizon than what current approaches based on limited 
sources of information can accomplish. 

The problem was given in three phases. 

Phase 1 Problem (Reconstruction) 
During Phase 1, the goal was to fuse multiple data sources to reconstruct Influenza‐like Illness 
rates at a spatial resolution finer than that of the ILI data from CDC. Performers were to estimate 
weekly ILI rates in the 48 contiguous states. The spatial resolution of the estimates was at the 
county level. The results were compared to a set of “Evaluation Regions” consisting of state‐



Approved for Public Release; Distribution Unlimited 
10 

level ILI rates from selected states (Massachusetts, North Carolina, Rhode Island and Texas) and 
district‐level ILI rates from 2 states (Mississippi and Tennessee), where each district consists of 
multiple counties. 

Phase 2 Problem (Nowcasting) 
During Phase 2, the goal was to produce estimated ILI rates that are timelier than those published 
by the CDC (while maintaining spatial resolution finer than the CDC). The ILI data from CDC 
and the Evaluation Region states are released after a delay of 1 to 2 weeks. The goal of Phase 2 
was to predict ILI rates in week t using all data from previous weeks t - 1, t - 2, …,t - n. This will 
include the CDC ILI rates from week t - 2 and the Twitter data from week t - 1.  

Phase 3 Problem (Nowcasting continued) 
The task in this phase of CP7 was to predict seasonal rates of Influenza-Like Illness in 60 distinct 
sub-populations of the continental US, ranging in size from the entire country to individual 
counties. 

In addition to historical ILI rate data for each population, three different kinds of covariate data, 
representing flu-related tweets, vaccination claims, and weather, were provided for use in 
solutions. In a simulated forecast experiment, all four kinds of variables were made available to 
solutions, one week of data at a time, over the 32-week target season. 

Subject matter expertise for CP7 was provided by Scientific Systems. 

3.1.8 CP8 – Desktop Activity Recognition  

Desktop knowledge workers perform a wide variety of procedures or activities each day as they 
carry out their work. Much of this work is repetitive, so there has long been interest in providing 
intelligent assistance for these tasks. One such effort was the Activity Recognition and Proactive 
Assistance (ARPA) effort within the Cognitive Assistant that Learns and Organizes (CALO) 
project led by SRI International in 2006-7, which was the inspiration for this challenge problem. 

We modeled each user as having a library of parameterized workflow procedures. For example, 
one procedure would be to provide edits on a document and return it to the primary author. This 
procedure consists of the following finite-state machine: 

1. Receive incoming EMAIL_IN with an attachment FILE_IN
2. Save the attachment as FILE1
3. Open FILE1 in Word
4. Repeat some number of times:

a. Make edits to FILE1
b. Save FILE1

5. Create EMAIL_OUT as a reply to EMAIL_IN
6. Attach FILE1 to EMAIL_OUT (the attached file is known as FILE_OUT)
7. Send EMAIL_OUT

Of course, there could be many variants of this procedure. For example, in Step 2, the user might 
Open the attachment and then use a SaveAs to create FILE1. In step 4b, the user might invoke 
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SaveAs to create a new file FILE2, which would then be attached to the email message in step 6. 
Finally, the user might close FILE1, exit Word, and then later reopen FILE1 in Word. 

One way that an intelligent desktop assistant could help the user would be to learn a set of 
workflow definitions, detect the start of each new workflow instance, and track the state of each 
workflow. Using this information, the assistant could offer to automatically execute some of the 
workflow steps via an automation interface. For example, when the user performs step 5, the 
assistant could offer to attach FILE1 to the message.   

Desktop knowledge workers are famous for multitasking. It is extremely common for the user to 
start a workflow and then be interrupted by many other workflows before resuming work on the 
original workflow. An assistant could also maintain a list of the active workflows and make it 
easy for the user to select a workflow and resume work on it (e.g., by restoring the state in step 
3).  

In this challenge problem, teams were given a sequence of events recorded from human subjects 
engaged in desktop work. These workflows were interleaved, with multiple instances of each 
workflow active simultaneously, but with different parameters. The inference task was to 
correctly assign each observed event to the correctly-parameterized workflow instance.  

In Phase 1, teams processed the events in “batch mode” to learn the workflow. Then, given a 
new sequence of events, their system should produce a MAP assignment of workflow identifiers 
(with parameters) to each event in the sequence. In Phase 2, teams processed the test sequences 
incrementally and computed a posterior distribution over workflow ids (and parameters) 
immediately after each event is observed. The metrics in Phase 1 measure accuracy, while the 
metrics in Phase 2 we also considered timeliness. 

Subject matter expertise for CP8 was provided by Oregon State University. 

3.1.9 CP9 – Hackathon I: Data Analysis  

Beginning with Challenge Problem 9, the TA1 team in collaboration with DARPA restructured 
the approach and executed evaluations as Hackathon events as part of the program PI meetings. 

The goal of the first Hackathon was to demonstrate the capabilities of probabilistic programming 
for a variety of tasks that arise in data analysis. The Hackathon was not structured as a 
competition. Instead, our intent was for performer teams to collaborate in order to best achieve 
the goal of demonstrating the capabilities of probabilistic programming. 

We developed a data set based on the Gapminder database.  This database consists of data on 
519 variables by country and by year.  We chose approximately 80 parallel time series that were 
of interest and had reasonable coverage and included many missing values. Some of the 
variables in the time series can be viewed as “intervention” variables and other variables can be 
viewed as “outcome” variables, but many variables could be viewed in multiple ways and may 
constitute important intermediates.  
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TA2-4 teams were given the following tasks to complete during the two-day hackathon event: 

Task 1: Impute missing values. Create a joint model of the data and then sample from the joint 
posterior over the missing values. 

Task 2: Generate causal hypotheses about the effects of intervention variables on outcome 
variables. Fit models of the outcome variables as a function of intervention variables 
(and potential confounding variables as appropriate) to generate causal hypotheses about 
the effects of intervention variables on outcome variables. 

Task 3: Model the processes that are causing missing values. Determine cases where the 
missing values are not missing at random. Build models of the missingness processes and 
incorporate those models into the imputation process of Task 1 if possible. 

Task 4: Criticize and refine a given model. Identify weaknesses in the TA1-provided model. 
Develop a refinement of the model (or completely replace it) to obtain a better model. 

Task 5: Compute optimal decisions. Using the model(s) from Task 2 and given a fixed budget, 
determine the optimal allocation of the budget in order to benefit the largest number of 
people.  

Subject matter expertise for CP9 was provided by Oregon State University. 

3.1.10 CP10 – Hackathon II: Weather Data  

The goal of the final PPAML hackathon was to demonstrate the power of probabilistic 
programming to support extrapolative generalization. Most statistical learning methods only 
perform interpolative generalization—that is, they interpolate between the given training 
examples to answer new queries. A consequence of this is that to work well across a wide variety 
of queries; they must be given very large training sets that provide examples of the full range of 
variability of the problem. In contrast, probabilistic programming methods have the potential to 
represent background knowledge and combine it with the training data to extrapolate beyond the 
training data. 

The data for this exercise is provided by the Oklahoma Mesonet (OK Mesonet). In an NSF-
funded project, Oregon State University collaborated with OK Mesonet on new methods for 
automated data quality control. Weather network sensors frequently break or drift out of 
calibration. The goal of automated data quality control is to detect broken and uncalibrated 
sensors and flag them for visits by technicians.  Similar problems arise in other sensor networks 
and emerging Internet of Things applications.  

The OK Mesonet consists of approximately 130 weather stations distributed across the state (see 
Figure 3).  Stations in southeast Oklahoma are located at elevations in the 100-300m range above 
sea level and are heavily influenced by the Gulf of Mexico. Stations in northwest Oklahoma are 
at elevations in the 500-1350m range and are more influenced by winds originating in front of 
the Rocky Mountains. 
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The dataset provided by the TA-1 team consisted of a set of stations that lie along a transect 
extending from southeast Oklahoma to northwest Oklahoma. The stations along this transect are 
divided into three groups. Six stations in the middle of the transect constituted the training-only 
stations. Data from four southeastern-most stations was provided for both training and testing. 
And data from four northwestern-most stations formed the test set. To successfully answer the 
queries, the teams were required to extrapolate in space and time.  

Figure 3 Locations of Oklahoma Mesonet weather stations.  Stations along the transect are highlighted. 

TA2-4 teams were given the following tasks to complete during the two-day hackathon event: 

Task 1: Coarse-Scale Prediction. The goal of this task is to predict summary statistics 
including monthly mean, high, and low temperature, mean, max, and min relative 
humidity, mean, max, and min solar radiation, and mean, max, and min wind speed. This 
query will be answered without any data from the test region stations. 

Task 2: Pure Prediction. In the pure prediction query, the teams will predict the readings for 
temperature, pressure, relative humidity, and solar radiation at a station without any other 
information about that station except its location and elevation.  

Task 3: Conditional Prediction. In the conditional prediction query, the teams will be given 
data at a station for some sensors (e.g., pressure, solar radiation, wind speed, and 
direction) and be asked to predict the values of other sensors (e.g., temperature and 
relative humidity).  

Task 4: Imputation. For this query, the teams will be given data for all sensors at one of the 
northwestern stations during the test period, but a substantial fraction (e.g., 40%) of the 
observations will be missing. The task will be to impute the missing values.  This will 
require various conditional prediction models.  

Task 5: Quality Control. For this query, the teams will be given data for a station. The data will 
contain inserted sensor failures based on a sensor failure simulator that we have 
developed. The teams will be asked to identify which sensor readings are the result of 
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broken or miscalibrated sensors. This is very similar to the Imputation task, but it tests 
how well the teams can estimate the uncertainty of the imputed/predicted values. 

Subject matter expertise for CP10 was provided by Oregon State University. 

3.1.11 Challenge Problem Artifacts and Future Research 

Over the course of the PPAML program, Galois facilitated the distribution of challenge problem 
artifacts to many non-affiliated research initiatives.  With the end of the program performance 
period, Galois has archived all challenge problem artifacts and made them publicly available.     

3.2 Evaluate Probabilistic Programming Systems 

Galois was responsible for evaluating the performance of each PPS on each challenge problem, 
measuring both the quality of the solutions and the run-time performance.  A report summarizing 
each TA2-4 PPS results on each challenge problem was written and made available to all 
program participants, as well as presented at each PI meeting. 

3.2.1 Procedures for Evaluating Challenge Problems 

Challenge problem evaluations were structured in six-month cycles.  The general structure of 
each evaluation cycle consisted of: 

• Challenge Problem Introduction – At each PI meeting a subset of Challenge problems
(including sub-phases) were introduced to the TA2-4 performers.  The introductions
consisted of a problem description, evaluation metrics, and evaluation milestone
schedule.

• Beta Evaluation Phase – Typically at the start of month three of the evaluation cycle,
Galois opened a beta evaluation phase where we would accept PPS solution submissions,
run evaluations and provide evaluation results.  This was an iterative process, supporting
PPS solution refinement.

• Final Evaluation – Two weeks before the PI meeting, the beta submission window
closed.  Galois ran final evaluation for each PPS generating a results report for DARPA
and TA2-4 teams.

• Reporting of Results – Results from the evaluation cycle were presented at the PI meeting
and distributed to TA2-4 teams.

3.2.2 Quantitative Evaluation 

Individual challenge problems explicitly defined the criteria for measuring the quality of PPS 
solutions as part of the problem description.  In addition, Galois collaborated with TA2-4 teams 
to solicit feedback.  With each PI meeting, after problem introduction, Galois hosted breakout 
sessions where teams could provide feedback and help shape problem evaluation criteria.     
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3.2.3 Qualitative Evaluation 

In assessing results of the first two evaluation cycles in Phase I of the program, Galois identified 
an opportunity to leverage our deep experience developing high-level and domain-specific 
languages.  While the quantitative metrics were critical to the development of PPSs, this fell 
short in assessing and providing valuable feedback on usability.  Galois, having more than 
twenty years of experience developing high-level and domain-specific languages had the 
resources available to fill this need. 

In evaluation cycle three Galois introduced a pedagogy experiment as part of the evaluation 
criteria with TA2-4 teams.  The goals of the experiment were to: 

• Improve PPS features and usability
• Expose gaps in documentation
• Improve communication with/across teams

A series of pair programming sessions between individual TA2-4 teams and Galois were run 
where we implemented and explored a series of simple models.  This enabled Galois to work 
directly in the PPS, facilitating deeper knowledge of PPS capabilities, usability and language 
design.  Feedback was provided directly to TA2-4 teams as well as summarized as part of the 
evaluation results at the PI meetings.      

3.2.4 Evaluation Infrastructure 

A priority for Galois as evaluator was to be able to support many performers wishing to rapidly 
iterate on challenge problem solution development.  It was critical that for any PPS submission 
during the beta evaluation phase of a cycle, Galois have the ability to run the evaluation and 
provide results quickly to enable performers to refine their solutions.   

Galois developed an evaluation framework to facilitate PPS evaluation runs.  An overview of the 
evaluation framework is shown in Figure 4.  A specification defining PPS submission 
requirements was developed and shared with TA2-4 teams.  This specification defined PPS 
packaging requirements, installation requirements and execution requirements.  PPSs adhering to 
these requirements enabled Galois to drop in new solutions and automate the evaluation 
execution. 
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Figure 4 Evaluation Framework 

3.2.5 Team Challenge Problems   

Goals and Impact 
 
One objective of the PPAML program was to develop user scenarios in a variety of application 
domains where PPS tools can be applied.   
 
As part of this objective, each TA2-4 team was responsible for defining a Team Challenge 
Problem (TCP) to demonstrate and evaluate the capabilities of their PPS tools.   By year two of 
the program, this requirement had not yet been met.  The TA1 team proposed a process for 
satisfying the Team Challenge Problem requirement that leveraged the expertise gained over the 
first two years managing TA2-4 challenge problems. This was agreed to by the Government and 
executed over the final two years of the program.  
 
The goal of the Team Challenge Problems was to demonstrate the merits of probabilistic 
programming to a broad scientific and technical audience. The ideal TCP exploits probabilistic 
programming to demonstrate novel capabilities on a compelling domain problem. This could 
include advancing the state of the art in some established problem or achieving interesting 
performance on a novel problem. 
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A total of six TA2-4 and TA3 teams submitted a Team Challenge Problem for evaluation: 
Charles River Analytics, Gamalon, Indiana University, Massachusetts Institute of Technology, 
Applied Communication Sciences, and SRI International. 

TCP Management and Evaluation Plan 

Satisfying the Team Challenge Problem requirement divided naturally into two phases: Defining 
the problems and evaluating the solutions.  The tasks for each phase are described in the 
following sections. 

Phase 1: Defining Team Challenge Problems 

The TA1 team developed a request for proposal (RFP) detailing the TCP requirements and used 
to measure acceptance of performer proposals.  The requirements covered the following 
dimensions: problem description and justification, feasibility, evaluation metrics and approach, 
dissemination, and suggested reviewers. 

The TA-1 team reviewed submitted proposals against the following criteria: 
a. Relevance to DoD and the goals of the PPAML program.
b. Potential to solve a novel problem or beat the state of the art on an existing problem.
c. Extent to which probabilistic programming will be the key enabling factor for success.
d. Degree to which the metrics are appropriate to the problem domain.
e. Extent to which the evaluation protocol supports an independent test.
f. Likelihood that the challenge problem data and evaluation can be publicly replicated.
g. Feasibility of the engineering plan for evaluation.

The Government reviewed the analysis before sharing the feedback with each submitting team as 
well as final proposal approval. 

Phase 2: Evaluating the Team Challenge Problems 

Team challenge problem submissions were evaluated in two rounds.  The TA-1 team evaluated 
submitted solutions using the evaluation metrics identified in the proposals.  Evaluation results 
were provided to each team to include in their PI meeting status presentations.  The TA-1 team 
met with each team prior to the PI meetings to arrive at an appropriate interpretation of the 
results. 

TA-1 Team Challenge Problem 

Building on our experience working with other performers in a TA1 role, and also leveraging the 
general programming languages expertise at Galois, we developed a probabilistic programming 
language (PPL) called Grappa. The goal of Grappa was to develop an approach to PPLs that 
could utilize special-purpose, efficient inference methods while still providing the expressivity 
and productivity benefits of existing general-purpose PPLs. The tension between these two goals 
— efficiency versus expressivity – manifests itself in terms of the representation used for the 
programs written in a PPL. A more general representation can represent more programs, yielding 
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a language with a higher expressivity, but efficient inference algorithms, such as Hamiltonian 
Monte-Carlo (HMC) sampling or Belief Propagation (BP), require more specific information, 
leading to special-purpose representations for each algorithm. Further, many of these special-
purpose representations rule out whole classes of probabilistic programs; e.g., HMC requires 
programs to be represented as probability functions with gradients, which allows only 
continuous, real-valued variables, while BP requires programs to be represented as Bayesian 
networks, which allows only discrete variables. These representations are not only in direct 
conflict with our expressivity goal, but can often, as in HMC and BP, be in conflict with each 
other. 
 
To overcome these difficulties, we have designed Grappa to be a multi-targetable PPL compiler, 
that can target a wide variety of different representations, as depicted in Figure 5. As input 
language, Grappa provides a high-level, expressive, functional language similar to many other 
PPLs, providing a high level of expressivity. For the subset of Grappa programs that can be 
compiled to a particular representation – for instance, programs with only continuous, real-
valued variables, which can be compiled to probability functions with gradients – Grappa can 
compile these programs to that representation, allowing special-purpose, efficient inference 
methods to be applied to that program. For those programs that fall outside of the subset, Grappa 
will emit compiler errors that inform the user of the mismatch. In this way, Grappa can support a 
wide variety of efficient inference methods in the same high-level, expressive language. 
 

 
Figure 5 Grappa- a multi-targetable PPL compiler 

Grappa currently includes support for a number of useful representations, such as probability 
functions with gradients and Bayesian networks, allowing a number of existing, efficient 
inference methods, such as HMC and BP, to be applied. Also included is a representation for 
compiling to PyMC models, a commonly-used Python package for performing Markov chain 
Monte Carlo (MCMC) sampling, thereby allowing Grappa to leverage the inference methods 
provided by that package. Additionally, Grappa provides a plugin architecture, that allows the set 
of representations it supports to be extended. This in turn opens up new opportunities for 
experimenting with new inference approaches, allowing researchers to try out new 
representations and/or combine existing representations without having to write a whole new 
compiler. For instance, we have already begun investigating a number of new ideas using this 
technology, including: 
 



Approved for Public Release; Distribution Unlimited 
19 

- Interleaved HMC sampling, for real-valued variables, and BP-based sampling, for discrete
variables, an approach that is particularly amenable to sampling, for instance, the parameters of
hidden Markov models;

- Parallelized sampling of independent variables, to enable speedups for models that can be
decomposed into independent groups of variables;

- Representations for Dirichlet process mixture models, a powerful class of models that have
recently been finding widespread applicability in a number of domains.

A key difficulty in supporting this wide array of compiler targets is that compilers are complex, 
difficult to write, and error prone. To avoid this problem, the Grappa plugin architecture for 
supporting new representations allows users to define representations using abstract 
interpretation. Abstract interpretation is an advanced programming languages technique for 
performing program analyses and transformations in a way that is compositional, meaning that 
the analysis or transformation of a whole program is built up from that of the pieces by 
combining those pieces in a straightforward, regular way. Rather than writing an entire compiler, 
a Grappa plugin writer need only provide an interpretation for the constructs of the Grappa 
language that a particular plugin supports, as Haskell type class instances. The Grappa compiler 
then combines the interpretations of the individual constructs of a program into an interpretation 
of the whole program, and also takes care of concerns that are universal across all interpretations, 
such as parsing, code generation, etc. Interpretations are much simpler to write and to debug than 
compilers because, rather than writing a translator from one syntactic representation to another, 
like a compiler, the interpretation of a Grappa construct is itself just code in the implementation 
language, or meta-language, used to write Grappa itself, which in this case is Haskell. That is, we 
can inspect, unit test, debug, etc., each piece of an interpretation just like standard Haskell code, 
instead of having to consider all possible ways a compiler could generate code. Further, 
interpretations are also type-checked, just like standard Haskell code, which also prevents a wide 
class of errors in the compiler that could generate ill-formed code. 

3.3 Annual Summer Schools 

Galois developed and led four annual summer school sessions.  The objectives of the summer 
school as part of the PPAML program were to: 

• Grow a research community interested in probabilistic programming,
• Create a community of practitioners with experience in probabilistic programming,
• Identify potential transition candidates and help them assess the suitability of probabilistic

programming for their problems, and
• Provide systemic feedback to the PPS development teams regarding the usability of their

probabilistic programming systems.

In pursuit of these objectives, each summer school was designed to teach participants the 
foundational background required for probabilistic programming, give them an opportunity to 
work directly with the creators of probabilistic programming languages being developed as part 
of PPAML, and apply the tools to specific domain problems. 
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Online surveys and personal interviews were utilized during the summer school to elicit 
feedback from the participants about the lectures, the PPSs as well as the content and structure of 
the summer school itself.  Feedback was shared with both DARPA and participating TA2-4 
teams. 
 
3.3.1 Structure of the Summer School 

Each summer school session was structured as a two-week session.  Utilizing participant and 
presenter feedback, along with our own observations and experience, Galois evolved the 
structure and format over the program.  By year three, and continued in year four we found the 
ideal structure and approach to include: 

• One TA2-4 team presenting their PPS solutions each week  
• A mix of foundational content, lecture and hands-on exercises 
• Provide time for participants to work on their real-world projects, with results and 

experience presented at the end of each week 
 
Figure 5 shows an example outline from the 2016 session. 
 

 
Figure 6 Structure of the 2016 Summer School 

3.3.2 Summer School Participants 

Participants at each summer school included students, researchers, and practitioners from 
industry who work on problems that may benefit from probabilistic programming.  Collectively, 
the participants were well versed in Mathematics and Computer Science and had hands-on 
experience with multiple programming languages. Generally, building probabilistic models, 
thinking generatively, and fitting data stood out as areas where participants lacked similar depth.  
 
Appendix A contains more detailed demographic information about the participants and 
compares it to that of the participants from each of the four summer school sessions. 
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3.3.3 Summer School Presenters 

Over the course of the program nearly all TA2-4 teams as well as two TA-3 teams taught and 
presented their PPSs at one or more Summer School Sessions.  Typically presenting teams 
brought five or more members to ensuring plenty of support for participants.  The presenting 
teams, and PPSs featured over the course of the program: 

• 2014 Summer School 
o Massachusetts Institute of Technology (MIT); Venture 
o Charles River Analytics (CRA); Figaro 
o University of California; Berkeley; BLOG 
o Stanford; Church 
o Gamalon; Dimple/Chimple 
o Indiana; Harkaru 

• 2015 Summer School 
o CRA; Figaro 
o MIT; Venture 

• 2016 Summer School 
o Invrea; Anglican 
o Stanford; webPPL 

• 2017 Summer School 
o MIT; BayesDB, CrossCat, Venture, Gen 
o Gamalon; Particle, Tycho 

 
3.3.4 Feedback Methodology 

The feedback elicited during the summer school was intended to provide insights about user 
experiences, perceptions about the probabilistic programming tools, and broader observations to 
enhance the PPAML program and associated summer schools.  
 
Participants completed questionnaires for each of the major phases of the summer school: On the 
first day of summer school, after the foundations lecture, after each of the initial language 
lectures, end of each language session, and on the last day of summer school.  
 
Raw questionnaire results were immediately shared with presenting teams.  Results were also 
used in each session report where major themes were summarized. 
 
3.4 Program Collaboration 

Galois configured, deployed and maintained technical infrastructure for supporting PPAML 
project collaboration.  The primary mechanisms and infrastructure included: 
 

• Wiki Servers: one public facing server, and one team-only server accessible by the 
Government as well as all TA1-4 teams.  This proved an effective mechanism to maintain 
and communicate program information (schedules, contact information, challenge 
problem information hub’s).  In addition, the wiki’s were used to support Summer School 
sessions as a central repository for participants to access session information, agenda’s, 
and presented materials.   
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Periodically the TA1 team was contacted by researchers or people in industry not 
affiliated with the program.  The wiki proved an effective source to connect their interests 
with PPAML materials.   
 

• A set of mailing lists for PI communication as well as to support each challenge problem. 

• A Mattermost server was deployed providing enterprise class team collaboration 
capabilities for Summer School collaboration.  

• Multimedia Digital Archiving System (MIDAS) data distribution server to support data 
hosting for the challenge problems. For challenge problems one through seven, Galois 
distributed all challenge problem data to TA2-4 teams via the MIDAS infrastructure. 

• OwnCloud, a cloud based file sharing tool was used in challenge problems one through 
seven for solution staging.  TA2-4 teams submitted all submissions via the ownCloud 
portal. 

• For challenge problems eight through ten, Galois hosted a Gitlab instance to support all 
aspects of challenge problem development and evaluation with TA2-4 teams. 

• Galois has held regular phone calls to facilitate collaboration. These include: bi-weekly 
calls with the Government; weekly calls with the TA1 team participants; as well as 
frequent albeit not regularly scheduled calls with TA2-4 teams. 

• The pedagogy sessions with the PPS design teams created closer working relationships 
and proved valuable in the clarification of assumptions and elaboration of questions. 

• A Google-hosted discussion forum was created to further cross-TA team communications 
and help identify significant technical topics of importance to the PPAML program. The 
forum was community-driven and moderated by Galois.   

• A Google-hosted repository was created to hold PPAML-related assets created by the 
various TA teams. Assets included in the repository were staged with the goal to transfer 
the collected assets to the DARPA-hosted public repository at the end of the PPAML 
program. 

4.0 RESULTS AND DISCUSSIONS 

Galois, as the TA-1 research evaluator, successfully achieved our program objectives.  
 
Develop Challenge Problems – Galois delivered ten challenge problems spanning the set of 
metrics laid out at the program kickoff.  A new challenge problem was fully defined and 
introduced every six months at each program PI meeting, with three problems introduced at the 
program kickoff.   
 
Galois worked closely with the Government and TA2-4 teams reviewing the results of each 
evaluation cycle, identifying opportunities for future problems.  A significant result of this 
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continuous improvement effort was the restructuring of the final two challenge problems as 
Hackathon events.  With the culmination of the four-year program, these events were designed to 
test and evaluate PPSs against the original program objectives and the maturity of the performer 
PPSs.   

All challenge problems were designed, built and prepared with the intent to be made publicly 
available for future research efforts.  Artifacts for all challenge problems are publicly available.  
This includes the problem descriptions, datasets and detailed documentation.  

Evaluate Probabilistic Programming Systems – To support a large set of PPS evaluations 
multiplied by an iterative evaluation approach, Galois developed an evaluation architecture, 
PEVAL, which automated the evaluation process.  A specification defining PPS submission 
requirements was developed and served as a contract with TA2-4 teams.   

Galois emphasized communication and collaboration with TA2-4 teams, which contributed to 
the successful completion of solution evaluations.  This included kick-off meetings to review and 
answer questions regarding the challenge problems, on-going check-ins to answer questions and 
support solution development as well as providing evaluation results along with our assessment 
and insights within twenty-four hours of the completion of any evaluation run.   

Evaluation results were successfully completed every cycle with results shared with TA2-4 
teams and presented at the corresponding PI meeting.  At each PI meeting Galois hosted break-
out sessions which as part of the agenda reviewed the evaluation results and working with 
attendees identifying opportunities for future evaluation cycles. 

With the introduction of Team Challenge Problems in the second half of the program, Galois 
performed independent evaluations across two phases for each of the submitted solutions.  Galois 
collaborated closely with the submitting teams to setup the proper evaluation environment.  With 
each submission, we ran the experiments and provided written results within one week.  The 
results included the metrics achieved as well as a qualitative assessment and inputs.  Galois also 
supported TA2-4 teams in the development of the results they presented at PI meetings. 

Organize and Run Summer Schools – Galois successfully organized, planned and facilitated 
four summer schools over the course of the program.  Achievements as measured against the 
program goals defined for this activity: 

• Grow a research community interested in probabilistic programming.  Create a
community of practitioners with experience in probabilistic programming.  This
objective was successfully achieved.  There was a total of 105 participants with 52
coming from Academia and 53 from Industry.  Several companies had additional
participants attend in subsequent sessions to continue to develop expertise in probabilistic
programming in their organizations.

• Identify potential transition candidates and help them assess the suitability of
probabilistic programming for their problems.  Integrated into the summer school
curriculum was the ability for participants to bring their own domain problems and work
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on them during the session.  Participants then presented results they achieved, as well as 
an assessment of the tools and approaches for their particular problem.  As the PPSs 
matured through the program, the final two summer school sessions generated several 
collaboration and transition opportunities between participants in industry and PPS 
teams. 

• Provide systemic feedback to the PPS development teams regarding the usability of
their probabilistic programming systems.  Feedback from participants was collected
through surveys, direct conversation and participant project result presentations.  The raw
survey results and project presentations were shared with the PPS development teams.  In
addition, a report summarizing the feedback, and major themes was produced after each
summer school and shared with both the Government and PPS development teams.  In
addition to the systematic feedback described, each PPS development team took
advantage of the opportunity to work directly with participants and get direct feedback
throughout each session.

Foster Collaboration – An emphasis of the TA-1 team was a continual focus on enabling 
collaboration amongst program performers.  Galois setup and hosted several collaboration tools, 
data repositories and communication forums to support collaboration workflows.  Over the 
course of the four-year program, Galois continued to evolve the workflows and tools.  A 
continuous improvement effort was practiced to take advantage of new collaboration technology 
as well as identify new workflows that could have positive impact on the program goals.   

Grappa – In the final Phase of the program, Galois was able to develop Grappa, a PPL, which is 
currently being applied on two government-funded programs, for the purpose of detecting cyber-
attacks. The first is the Air Force Research Laboratory’s Malware Detection program. For this 
program, we are using Grappa to detect cyber-attacks on UAVs, by training a collection of 
hidden Markov models to detect communication patterns between processes on a UAV that 
differ from “normal” communication patterns. The second is DARPA’s Transparent Computing 
program, wherein we are applying Grappa to detect advanced persistent threats in enterprise 
networks. For this program, we are applying Grappa to learn “normal” patterns of process 
forking, to detect, e.g., Firefox processes forking unexpected system processes that could 
indicate a cyber-attack. Grappa is also currently in the process of being open-sourced and moved 
to GitHub. Finally, as part of the Grappa project, we have also made theoretical advances in PPL 
semantics, by defining a denotational semantics based on Lebesgue integration that also supports 
higher-order functional programs. This combination of semantic features, which has so far been 
elusive to semantics researchers, is the subject of a submission to the International Conference 
on Programming Languages Design and Implementation 2018. 

5.0 CONCLUSIONS 

As the TA-1 Program Evaluator, we successfully met our primary program objectives. 

1. Develop Challenge Problems – A total of ten challenge problems were delivered
spanning a broad range of characteristics designed to ensure that over the course of the
program the population of challenge problems covered a wide range of domains and
problem types.
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2. Evaluate Probabilistic Programming Systems – The TA-1 team completed all
evaluations on schedule, measuring the performance of PPSs on each challenge problem
with results presented at each PI meeting.

3. Organize and Run Summer Schools – Over four summer school sessions, a total of 105
participants from both Academia and Industry attended the program.  The summer school
track of the PPAML program was an effective approach to growing the research
community interested in probabilistic programming, developing a community of
practitioners with experience in probabilistic programming, identifying transition
candidates and opportunities and providing systematic feedback to the PPS development
teams regarding the usability of their probabilistic programming systems.
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7.0 APPENDICES 

7.1 Appendix A: Summer School Participant Demographics 

The following information was compiled from application data provided by the summer school 
participants.  

Summer School 
Participation 

2017 2016 2015 2014 

Applications Received 45 44 56 21 
Applications Accepted 42 35 25 21 
Participant Count 34 27 23 21 

Highest level of 
education 

2017 
Participants 

2016  
Participants 

2015 
Participants 

2014 
Participants 

Bachelors, in progress 1 (3%) 3 (11%) 4 (17%) 4  (19%) 
Bachelors, completed 3 (9%) 3 (11%) 5 (22%) 5  (24%) 
Masters, in progress 1 (3%) 2 (7%) 3 (13%) 
Masters, completed 6 (18%) 8 (30%) 3 (13%) 

Doctorate, in progress 14 (41%) 8 (30%) 6 (26%) 9  (43%) 

Doctorate, completed 9 (26%) 3 (11%) 2 (9%) 3  (14%) 
Total 34 (100%) 27 (100%) 23 (100%) 21 (100%) 

Organization Type 2017 
Participants 

2016 
Participants 

2015 
Participants 

2014 
Participants 

Academic 16 (47%) 12 (44%) 9 (39%) 15  (71%) 
Commercial 18 (53%) 15 (56%) 14 (61%) 6  (29%) 
Total 34 (100%) 27 (100%) 23 (100%) 21 (100%) 
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Field of Education 2017 
Participants 

2016 
Participants 

2015 
Participants 

2014 
Participants 

Artificial Intelligence 
/ Machine learning  3 (9%) 3 (11%) 

Astronomy 1 (4%) 
Biology 1  (5%) 
Chemistry 1 (4%) 
Computational 
Science(3) 1 (3%) 1 (4%) 

Criminal Justice 1 (3%) 
Economics  1 (%) 1 (4%) 2 (9%) 
Engineering (1) 1 (3%) 2 (7%) 4 (17%) 2  (10%) 
Finance 1 (3%) 
Genetics 1 (3%) 
Informatics/Data 
Science 2 (6%) 1 (4%) 3  (14%) 

Math & Computer 
Science 18 (53%) 16 (59%) 11 (48%) 12  (57%) 

MBA 2 (6%) 
Neuroscience 1 (4%) 1  (5%) 
Other/Not Specified 1 (3%) 1 (4%) 
Philosophy 1  (5%) 
Physics (2) 1 (3%) 2 (7%) 1 (4%) 1  (5%) 
Political Science 1 (3%) 
Psychology 1 (4%) 
Robotics 1 (4%) 
Total 34 (100%) 27 (100%) 23 (100%) 21 (100%) 

(1) Includes Aerospace, Biomedical,  Electrical, Biological, Mechanical, Chemical
(2) Includes Biophysics
(3) Includes Social, Hydrodynamics
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

AFRL Air Force Research Laboratory 
ARPA Activity Recognition and Proactive Assistance 
BP Belief Propogation 
CALO Cognitive Assistant that Learns and Organizes 
CDC Centers for Disease Control and Prevention 
CFG Context-free Grammar 
CP Challenge Problem 
CRA Charles River Analytics 
DARPA Defense Advanced Research Projects Agency 
DoD Department of Defense 
HMC Hamiltonian Monte-Carlo 
ILI Influenza-like Illness 
ISR Intelligence, Surveillance, and Reconnaissance 
LDC Linguistic Data Consortium 
MAP Maximum Aposteriori Probability 
MCMC Markov chain Monte Carlo 
MIDAS Multimedia Digital Archiving System 
MIT Massachusetts Institute of Technology 
N Noun 
NLP Natural Language Processing 
NP Noun Phrase 
PCFG Probabilistic Context-free Grammar 
PI Principal Investigator 
PPAML Probabilistic Programming for Advancing Machine Learning 
PPL Probabilistic Programming Language 
PPS Probabilistic Programming System 
RFP Request for Proposal 
TA Technical Area 
TCP Team Challenge Problem 
UAS Unmanned Autonomous Systems 
WAMI  Wide Area Motion Imagery 
WPAFB Wright Patterson Air Force Base 
WSJ Wall Street Journal 




